Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(7): e2307143121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38330011

RESUMEN

Zinc is an essential nutrient-it is stored during periods of excess to promote detoxification and released during periods of deficiency to sustain function. Lysosome-related organelles (LROs) are an evolutionarily conserved site of zinc storage, but mechanisms that control the directional zinc flow necessary for homeostasis are not well understood. In Caenorhabditis elegans intestinal cells, the CDF-2 transporter stores zinc in LROs during excess. Here, we identify ZIPT-2.3 as the transporter that releases zinc during deficiency; ZIPT-2.3 transports zinc, localizes to the membrane of LROs in intestinal cells, and is necessary for zinc release from LROs and survival during zinc deficiency. In zinc excess and deficiency, the expression levels of CDF-2 and ZIPT-2.3 are reciprocally regulated at the level of mRNA and protein, establishing a fundamental mechanism for directional flow to promote homeostasis. To elucidate how the ratio of CDF-2 and ZIPT-2.3 is altered, we used super-resolution microscopy to demonstrate that LROs are composed of a spherical acidified compartment and a hemispherical expansion compartment. The expansion compartment increases in volume during zinc excess and deficiency. These results identify the expansion compartment as an unexpected structural feature of LROs that facilitates rapid transitions in the composition of zinc transporters to mediate homeostasis, likely minimizing the disturbance to the acidified compartment.


Asunto(s)
Proteínas de Caenorhabditis elegans , Proteínas Portadoras , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Lisosomas/metabolismo , Orgánulos/metabolismo , Homeostasis , Zinc/metabolismo
2.
Development ; 151(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284547

RESUMEN

The renin-angiotensin-aldosterone system (RAAS) plays a well-characterized role regulating blood pressure in mammals. Pharmacological and genetic manipulation of the RAAS has been shown to extend lifespan in Caenorhabditis elegans, Drosophila and rodents, but its mechanism is not well defined. Here, we investigate the angiotensin-converting enzyme (ACE) inhibitor drug captopril, which extends lifespan in worms and mice. To investigate the mechanism, we performed a forward genetic screen for captopril-hypersensitive mutants. We identified a missense mutation that causes a partial loss of function of the daf-2 receptor tyrosine kinase gene, a powerful regulator of aging. The homologous mutation in the human insulin receptor causes Donohue syndrome, establishing these mutant worms as an invertebrate model of this disease. Captopril functions in C. elegans by inhibiting ACN-1, the worm homolog of ACE. Reducing the activity of acn-1 via captopril or RNA interference promoted dauer larvae formation, suggesting that acn-1 is a daf gene. Captopril-mediated lifespan extension was abrogated by daf-16(lf) and daf-12(lf) mutations. Our results indicate that captopril and acn-1 influence lifespan by modulating dauer formation pathways. We speculate that this represents a conserved mechanism of lifespan control.


Asunto(s)
Proteínas de Caenorhabditis elegans , Captopril , Animales , Humanos , Ratones , Captopril/farmacología , Captopril/metabolismo , Caenorhabditis elegans/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Envejecimiento , Longevidad/fisiología , Receptor de Insulina/metabolismo , Mutación/genética , Mamíferos/metabolismo
3.
Sci Adv ; 9(44): eadh2584, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37910615

RESUMEN

The γ-aminobutyric acid-mediated (GABAergic) system participates in many aspects of organismal physiology and disease, including proteostasis, neuronal dysfunction, and life-span extension. Many of these phenotypes are also regulated by reactive oxygen species (ROS), but the redox mechanisms linking the GABAergic system to these phenotypes are not well defined. Here, we report that GABAergic redox signaling cell nonautonomously activates many stress response pathways in Caenorhabditis elegans and enhances vulnerability to proteostasis disease in the absence of oxidative stress. Cell nonautonomous redox activation of the mitochondrial unfolded protein response (mitoUPR) proteostasis network requires UNC-49, a GABAA receptor that we show is activated by hydrogen peroxide. MitoUPR induction by a spinocerebellar ataxia type 3 (SCA3) C. elegans neurodegenerative disease model was similarly dependent on UNC-49 in C. elegans. These results demonstrate a multi-tissue paradigm for redox signaling in the GABAergic system that is transduced via a GABAA receptor to function in cell nonautonomous regulation of health, proteostasis, and disease.


Asunto(s)
Proteínas de Caenorhabditis elegans , Enfermedades Neurodegenerativas , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Oxidación-Reducción , Receptores de GABA-A/metabolismo , Respuesta de Proteína Desplegada
4.
bioRxiv ; 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37502959

RESUMEN

The renin-angiotensin-aldosterone system (RAAS) plays a well-characterized role regulating blood pressure in mammals. Pharmacological and genetic manipulation of the RAAS has been shown to extend lifespan in C. elegans , Drosophila , and rodents, but its mechanism is not well defined. Here we investigate the angiotensin-converting enzyme (ACE) inhibitor drug captopril, which extends lifespan in worms and mice. To investigate the mechanism, we performed a forward genetic screen for captopril hypersensitive mutants. We identified a missense mutation that causes a partial loss-of-function of the daf-2 receptor tyrosine kinase gene, a powerful regulator of aging. The homologous mutation in the human insulin receptor causes Donohue syndrome, establishing these mutant worms as an invertebrate model of this disease. Captopril functions in C. elegans by inhibiting ACN-1, the worm homolog of ACE. Reducing the activity of acn-1 via captopril or RNAi promoted dauer larvae formation, suggesting acn-1 is a daf gene. Captopril-mediated lifespan extension xwas abrogated by daf-16(lf) and daf-12(lf) mutations. Our results indicate that captopril and acn-1 control aging by modulating dauer formation pathways. We speculate that this represents a conserved mechanism of lifespan control. Summary Statement: Captopril and acn-1 control aging. By demonstrating they regulate dauer formation and interact with daf genes, including a new DAF-2(A261V) mutant corresponding to a human disease variant, we clarified the mechanism.

5.
J Virol ; 96(22): e0121122, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36342299

RESUMEN

Viruses utilize host lipids to promote the viral life cycle, but much remains unknown as to how this is regulated. Zinc is a critical element for life, and few studies have linked zinc to lipid homeostasis. We demonstrated that Caenorhabditis elegans infection by Orsay virus is dependent upon lipids and that mutation of the master regulator of lipid biosynthesis, sbp-1, reduced Orsay virus RNA levels by ~236-fold. Virus infection could be rescued by dietary supplementation with lipids downstream of fat-6/fat-7. Mutation of a zinc transporter encoded by sur-7, which suppresses the lipid defect of sbp-1, also rescued Orsay virus infection. Furthermore, reducing zinc levels by chemical chelation in the sbp-1 mutant also increased lipids and rescued Orsay virus RNA levels. Finally, increasing zinc levels by dietary supplementation led to an ~1,620-fold reduction in viral RNA. These findings provide insights into the critical interactions between zinc and host lipids necessary for virus infection. IMPORTANCE Orsay virus is the only known natural virus pathogen of Caenorhabditis elegans, which shares many evolutionarily conserved pathways with humans. We leveraged the powerful genetic tractability of C. elegans to characterize a novel interaction between zinc, lipids, and virus infection. Inhibition of the Orsay virus replication in the sbp-1 mutant animals, explained by the lipid depletion, can be rescued by a genetic and pharmacological approach that reduces the zinc accumulation and rescues the lipid levels in this mutant animal. Interestingly, the human ortholog of sbp-1, srebp-1, has been reported to play a role for virus infection, and zinc has been shown to inhibit the virus replication of multiple viruses. However, the mechanism through which zinc is acting is not well understood. These results suggest that the lipid regulation mediated by zinc may play a relevant role during mammalian virus infection.


Asunto(s)
Proteínas de Caenorhabditis elegans , Nodaviridae , Virosis , Virus , Animales , Humanos , Caenorhabditis elegans , Zinc/metabolismo , Nodaviridae/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Virus/genética , ARN Viral/genética , ARN Viral/metabolismo , Lípidos , Mamíferos/genética
6.
Front Pharmacol ; 13: 938650, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36188619

RESUMEN

The free-living, non-parasitic nematode Caenorhabditis elegans is a premier model organism for the study of aging and longevity due to its short lifespan, powerful genetic tools, and conservation of fundamental mechanisms with mammals. Approximately 70 percent of human genes have homologs in C. elegans, including many that encode proteins in pathways that influence aging. Numerous genetic pathways have been identified in C. elegans that affect lifespan, including the dietary restriction pathway, the insulin/insulin-like growth factor (IGF) signaling pathway, and the disruption of components of the mitochondrial electron transport chain. C. elegans is also a powerful system for performing drug screens, and many lifespan-extending compounds have been reported; notably, several FDA-approved medications extend the lifespan in C. elegans, raising the possibility that they can also extend the lifespan in humans. The renin-angiotensin system (RAS) in mammals is an endocrine system that regulates blood pressure and a paracrine system that acts in a wide range of tissues to control physiological processes; it is a popular target for drugs that reduce blood pressure, including angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs). Emerging evidence indicates that this system influences aging. In C. elegans, decreasing the activity of the ACE homolog acn-1 or treatment with the ACE-inhibitor Captopril significantly extends the lifespan. In Drosophila, treatment with ACE inhibitors extends the lifespan. In rodents, manipulating the RAS with genetic or pharmacological interventions can extend the lifespan. In humans, polymorphisms in the ACE gene are associated with extreme longevity. These results suggest the RAS plays a conserved role in controlling longevity. Here, we review studies of the RAS and aging, emphasizing the potential of C. elegans as a model for understanding the mechanism of lifespan control.

7.
Aging Cell ; 21(12): e13724, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36179270

RESUMEN

Mice bred in 2017 and entered into the C2017 cohort were tested for possible lifespan benefits of (R/S)-1,3-butanediol (BD), captopril (Capt), leucine (Leu), the Nrf2-activating botanical mixture PB125, sulindac, syringaresinol, or the combination of rapamycin and acarbose started at 9 or 16 months of age (RaAc9, RaAc16). In male mice, the combination of Rapa and Aca started at 9 months and led to a longer lifespan than in either of the two prior cohorts of mice treated with Rapa only, suggesting that this drug combination was more potent than either of its components used alone. In females, lifespan in mice receiving both drugs was neither higher nor lower than that seen previously in Rapa only, perhaps reflecting the limited survival benefits seen in prior cohorts of females receiving Aca alone. Capt led to a significant, though small (4% or 5%), increase in female lifespan. Capt also showed some possible benefits in male mice, but the interpretation was complicated by the unusually low survival of controls at one of the three test sites. BD seemed to produce a small (2%) increase in females, but only if the analysis included data from the site with unusually short-lived controls. None of the other 4 tested agents led to any lifespan benefit. The C2017 ITP dataset shows that combinations of anti-aging drugs may have effects that surpass the benefits produced by either drug used alone, and that additional studies of captopril, over a wider range of doses, are likely to be rewarding.


Asunto(s)
Acarbosa , Sirolimus , Ratones , Masculino , Femenino , Animales , Acarbosa/farmacología , Sirolimus/farmacología , Captopril/farmacología , Longevidad , Envejecimiento
8.
Nat Comput Sci ; 2(2): 90-101, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37981946

RESUMEN

Understanding populations is important because they are a fundamental level of biological organization. Individual traits such as aging and lifespan interact in complex ways to determine birth and death and thereby influence population dynamics. However, we lack a deep understanding of the relationships between individual traits and population dynamics. To address this challenge, we established a laboratory population using the model organism C. elegans and an individual-based computational simulation informed by measurements of real worms. The simulation realistically models individual worms and the behavior of the laboratory population. To elucidate the role of aging in population dynamics, we analyzed old age as a cause of death and showed, using computer simulations, that it was influenced by maximum lifespan, rate of adult culling, and progeny number/food stability. Notably, populations displayed a tipping point for aging as the primary cause of adult death. Our work establishes a conceptual framework that could be used for better understanding why certain animals die of old age in the wild.

9.
Development ; 148(21)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34739028

RESUMEN

Sperm activation is a rapid and dramatic cell differentiation event that does not involve changes in transcription, and the signaling cascades that mediate this process have not been fully defined. zipt-7.1 encodes a zinc transporter, and zipt-7.1(lf) mutants display sperm-activation defects, leading to the hypothesis that zinc signaling mediates sperm activation in Caenorhabditis elegans. Here, we describe the development of a method for dynamic imaging of labile zinc during sperm activation using the zinc-specific fluorescence probe FluoZin-3 AM and time-lapse confocal imaging. Two phases of dynamic changes in labile zinc levels were observed during sperm activation. Forced zinc entry using the zinc ionophore pyrithione activated sperm in vitro, and it suppressed the defects of zipt-7.1(lf) mutants, indicating that high levels of cytosolic zinc are sufficient for sperm activation. We compared activation by zinc pyrithione to activation by extracellular zinc, the Na+/H+ antiporter monensin and the protease cocktail pronase in multiple mutant backgrounds. These results indicate that the protease pathway does not require zinc signaling, suggesting that zinc signaling is sufficient to activate sperm but is not always necessary.


Asunto(s)
Caenorhabditis elegans/fisiología , Espermatogénesis/fisiología , Zinc/metabolismo , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Citosol/metabolismo , Masculino , Monensina/farmacología , Mutación , Compuestos Organometálicos/farmacología , Pronasa/farmacología , Piridinas/farmacología , Transducción de Señal , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo , Imagen de Lapso de Tiempo
10.
Front Cell Dev Biol ; 9: 718522, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34604218

RESUMEN

Aging animals display a broad range of progressive degenerative changes, and one of the most fascinating is the decline of female reproductive function. In the model organism Caenorhabditis elegans, hermaphrodites reach a peak of progeny production on day 2 of adulthood and then display a rapid decline; progeny production typically ends by day 8 of adulthood. Since animals typically survive until day 15 of adulthood, there is a substantial post reproductive lifespan. Here we review the molecular and cellular changes that occur during reproductive aging, including reductions in stem cell number and activity, slowing meiotic progression, diminished Notch signaling, and deterioration of germ line and oocyte morphology. Several interventions have been identified that delay reproductive aging, including mutations, drugs and environmental factors such as temperature. The detailed description of reproductive aging coupled with interventions that delay this process have made C. elegans a leading model system to understand the mechanisms that drive reproductive aging. While reproductive aging has dramatic consequences for individual fertility, it also has consequences for the ecology of the population. Population dynamics are driven by birth and death, and reproductive aging is one important factor that influences birth rate. A variety of theories have been advanced to explain why reproductive aging occurs and how it has been sculpted during evolution. Here we summarize these theories and discuss the utility of C. elegans for testing mechanistic and evolutionary models of reproductive aging.

11.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34649987

RESUMEN

Cadmium is an environmental pollutant and significant health hazard that is similar to the physiological metal zinc. In Caenorhabditis elegans, high zinc homeostasis is regulated by the high zinc activated nuclear receptor (HIZR-1) transcription factor. To define relationships between the responses to high zinc and cadmium, we analyzed transcription. Many genes were activated by both high zinc and cadmium, and hizr-1 was necessary for activation of a subset of these genes; in addition, many genes activated by cadmium did not require hizr-1, indicating there are at least two mechanisms of cadmium-regulated transcription. Cadmium directly bound HIZR-1, promoted nuclear accumulation of HIZR-1 in intestinal cells, and activated HIZR-1-mediated transcription via the high zinc activation (HZA) enhancer. Thus, cadmium binding promotes HIZR-1 activity, indicating that cadmium acts as a zinc mimetic to hijack the high zinc response. To elucidate the relationships between high zinc and cadmium detoxification, we analyzed genes that function in three pathways: the pcs-1/phytochelatin pathway strongly promoted cadmium resistance but not high zinc resistance, the hizr-1/HZA pathway strongly promoted high zinc resistance but not cadmium resistance, and the mek-1/sek-1/kinase signaling pathway promoted resistance to high zinc and cadmium. These studies identify resistance pathways that are specific for high zinc and cadmium, as well as a shared pathway.


Asunto(s)
Cadmio/farmacología , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/metabolismo , Zinc/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Homeostasis , Ligandos , Metalotioneína/metabolismo , Unión Proteica
12.
Biochim Biophys Acta Mol Cell Res ; 1868(1): 118882, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33017595

RESUMEN

C. elegans is a powerful model for studies of zinc biology. Here we review recent discoveries and emphasize the advantages of this model organism. Methods for manipulating and measuring zinc levels have been developed in or adapted to the worm. The C. elegans genome encodes highly conserved zinc transporters, and their expression and function are beginning to be characterized. Homeostatic mechanisms have evolved to respond to high and low zinc conditions. The pathway for high zinc homeostasis has been recently elucidated based on the discovery of the master regulator of high zinc homeostasis, HIZR-1. A parallel pathway for low zinc homeostasis is beginning to emerge based on the discovery of the Low Zinc Activation promoter element. Zinc has been established to play a role in two cell fate determination events, and accumulating evidence suggests zinc may function as a second messenger signaling molecule during vulval cell development and sperm activation.


Asunto(s)
Caenorhabditis elegans/genética , Proteínas Portadoras/genética , Homeostasis/genética , Zinc/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , Regiones Promotoras Genéticas/genética , Transducción de Señal/genética
13.
PLoS Biol ; 17(5): e3000245, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31086360

RESUMEN

Lysosomes are ubiquitous acidified organelles that degrade intracellular and extracellular material trafficked via multiple pathways. Lysosomes also sense cellular nutrient levels to regulate target of rapamycin (TOR) kinase, a signaling enzyme that drives growth and suppresses activity of the MiT/TFE family of transcription factors that control biogenesis of lysosomes. In this study, we subjected worms lacking basic helix-loop-helix transcription factor 30 (hlh-30), the Caenorhabditis elegans MiT/TFE ortholog, to starvation followed by refeeding to understand how this pathway regulates survival with variable nutrient supply. Loss of HLH-30 markedly impaired survival in starved larval worms and recovery upon refeeding bacteria. Remarkably, provision of simple nutrients in a completely defined medium (C. elegans maintenance medium [CeMM]), specifically glucose and linoleic acid, restored lysosomal acidification, TOR activation, and survival with refeeding despite the absence of HLH-30. Worms deficient in lysosomal lipase 2 (lipl-2), a lysosomal enzyme that is transcriptionally up-regulated in starvation in an HLH-30-dependent manner, also demonstrated increased mortality with starvation-refeeding that was partially rescued with glucose, suggesting a critical role for LIPL-2 in lipid metabolism under starvation. CeMM induced transcription of vacuolar proton pump subunits in hlh-30 mutant worms, and knockdown of vacuolar H+-ATPase 12 (vha-12) and its upstream regulator, nuclear hormone receptor 31 (nhr-31), abolished the rescue with CeMM. Loss of Ras-related GTP binding protein C homolog 1 RAGC-1, the ortholog for mammalian RagC/D GTPases, conferred starvation-refeeding lethality, and RAGC-1 overexpression was sufficient to rescue starved hlh-30 mutant worms, demonstrating a critical need for TOR activation with refeeding. These results show that HLH-30 activation is critical for sustaining survival during starvation-refeeding stress via regulating TOR. Glucose and linoleic acid bypass the requirement for HLH-30 in coupling lysosome nutrient sensing to survival.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Lisosomas/metabolismo , Nutrientes , Animales , Núcleo Celular/metabolismo , Ciclo del Ácido Cítrico , Medios de Cultivo , Metabolismo Energético/genética , Conducta Alimentaria , Ácido Linoleico/metabolismo , Lipasa/metabolismo , Metaboloma , Mutación/genética , Fenotipo , Bombas de Protones/metabolismo , Inanición/metabolismo , Estrés Fisiológico/genética , Análisis de Supervivencia , Activación Transcripcional/genética
14.
Dev Cell ; 49(1): 100-117.e6, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30965033

RESUMEN

Mechanisms that control aging are important yet poorly defined. To discover longevity control genes, we performed a forward genetic screen for delayed reproductive aging in C. elegans. Here, we show that am117 is a nonsense mutation in the phm-2 gene, which encodes a protein homologous to human scaffold attachment factor B. phm-2(lf) mutant worms have an abnormal pharynx grinder, which allows live bacteria to accumulate in the intestine. This defect shortens lifespan on highly pathogenic bacteria but extends lifespan and health span on the standard E. coli diet by activating innate immunity pathways that lead to bacterial avoidance behavior and dietary restriction. eat-2(lf) mutants displayed a similar phenotype, indicating accumulation of live bacteria also triggers extended longevity in this mutant. The analysis of phm-2 elucidates connections between pathogen response and aging by defining a mechanism of longevity extension in C. elegans-bacterial colonization, innate immune activation, and bacterial avoidance behavior.


Asunto(s)
Envejecimiento/genética , Proteínas de Caenorhabditis elegans/genética , Longevidad/genética , Receptores Nicotínicos/genética , Envejecimiento/inmunología , Animales , Reacción de Prevención/fisiología , Bacterias/inmunología , Bacterias/patogenicidad , Caenorhabditis elegans/genética , Caenorhabditis elegans/inmunología , Caenorhabditis elegans/microbiología , Dieta , Escherichia coli/química , Regulación de la Expresión Génica/genética , Interacciones Huésped-Patógeno/genética , Humanos , Inmunidad Innata/genética , Intestinos/microbiología , Longevidad/inmunología
15.
Development ; 146(8)2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30936182

RESUMEN

C. elegans hermaphrodites display dramatic age-related decline of reproduction early in life, while somatic functions are still robust. To understand reproductive aging, we analyzed the assembly line of oocyte production that generates fertilized eggs. Aging germlines displayed both sporadic and population-wide changes. A small fraction of aging animals displayed endomitotic oocytes in the germline and other defects. By contrast, all animals displayed age-related decreases in germline size and function. As early as day 3 of adulthood, animals displayed fewer stem cells and a slower cell cycle, which combine to substantially decrease progenitor zone output. The C. elegans germline is the only adult tissue that contains stem cells, allowing the analysis of stem cells in aging. To investigate the mechanism of the decrease in stem cell number, we analyzed the Notch signaling pathway. The Notch effectors LST-1 and SYGL-1 displayed age-related decreases in expression domains, suggesting a role for Notch signaling in germline aging. The results indicate that although sporadic defects account for the sterility of some animals, population-wide changes account for the overall pattern of reproductive aging.


Asunto(s)
Envejecimiento/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Ciclo Celular/genética , Ciclo Celular/fisiología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Femenino , Células Germinativas , Oocitos/citología , Oocitos/metabolismo , Reproducción/genética , Reproducción/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Células Madre/citología , Células Madre/metabolismo
16.
J Vis Exp ; (140)2018 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-30394383

RESUMEN

Cell cycle analysis in eukaryotes frequently utilizes chromosome morphology, expression and/or localization of gene products required for various phases of the cell cycle, or the incorporation of nucleoside analogs. During S-phase, DNA polymerases incorporate thymidine analogs such as EdU or BrdU into chromosomal DNA, marking the cells for analysis. For C. elegans, the nucleoside analog EdU is fed to the worms during regular culture and is compatible with immunofluorescent techniques. The germline of C. elegans is a powerful model system for the studies of signaling pathways, stem cells, meiosis, and cell cycle because it is transparent, genetically facile, and meiotic prophase and cellular differentiation/gametogenesis occur in a linear assembly-like fashion. These features make EdU a great tool to study dynamic aspects of mitotically cycling cells and germline development. This protocol describes how to successfully prepare EdU bacteria, feed them to wild-type C. elegans hermaphrodites, dissect the hermaphrodite gonad, stain for EdU incorporation into DNA, stain with antibodies to detect various cell cycle and developmental markers, image the gonad and analyze the results. The protocol describes the variations in the method and analysis for the measurement of S-phase index, M-phase index, G2 duration, cell cycle duration, rate of meiotic entry, and rate of meiotic prophase progression. This method can be adapted to study the cell cycle or cell history in other tissues, stages, genetic backgrounds, and physiological conditions.


Asunto(s)
Ciclo Celular/inmunología , Timidina/metabolismo , Animales , Caenorhabditis elegans , Células Germinativas , Transducción de Señal
17.
PLoS Biol ; 16(6): e2005069, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29879108

RESUMEN

Sperm activation is a fascinating example of cell differentiation, in which immotile spermatids undergo a rapid and dramatic transition to become mature, motile sperm. Because the sperm nucleus is transcriptionally silent, this transition does not involve transcriptional changes. Although Caenorhabditis elegans is a leading model for studies of sperm activation, the mechanisms by which signaling pathways induce this transformation remain poorly characterized. Here we show that a conserved transmembrane zinc transporter, ZIPT-7.1, regulates the induction of sperm activation in Caenorhabditis nematodes. The zipt-7.1 mutant hermaphrodites cannot self-fertilize, and males reproduce poorly, because mutant spermatids are defective in responding to activating signals. The zipt-7.1 gene is expressed in the germ line and functions in germ cells to promote sperm activation. When expressed in mammalian cells, ZIPT-7.1 mediates zinc transport with high specificity and is predominantly located on internal membranes. Finally, genetic epistasis places zipt-7.1 at the end of the spe-8 sperm activation pathway, and ZIPT-7.1 binds SPE-4, a presenilin that regulates sperm activation. Based on these results, we propose a new model for sperm activation. In spermatids, inactive ZIPT-7.1 is localized to the membranous organelles, which contain higher levels of zinc than the cytoplasm. When sperm activation is triggered, ZIPT-7.1 activity increases, releasing zinc from internal stores. The resulting increase in cytoplasmic zinc promotes the phenotypic changes characteristic of activation. Thus, zinc signaling is a key step in the signal transduction process that mediates sperm activation, and we have identified a zinc transporter that is central to this activation process.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Proteínas Portadoras/fisiología , Espermatogénesis/fisiología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Portadoras/genética , Epistasis Genética , Femenino , Genes de Helminto , Transporte Iónico , Masculino , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Mutación , Filogenia , Transducción de Señal , Espermátides/metabolismo , Espermatocitos/metabolismo , Espermatogénesis/genética , Espermatozoides/metabolismo , Zinc/metabolismo
18.
BMC Dev Biol ; 18(1): 12, 2018 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-29848313

RESUMEN

BACKGROUND: The proliferating cell nuclear antigen (PCNA or PCN-1 in C. elegans), an essential processivity factor for DNA polymerase δ, has been widely used as a marker of S-phase. In C. elegans early embryos, PCN-1 accumulation is cyclic, localizing to the nucleus during S-phase and the cytoplasm during the rest of the cell cycle. The C. elegans larval and adult germline is an important model systems for studying cell cycle regulation, and it was observed that the cell cycle regulator cyclin E (CYE-1 in C. elegans) displays a non-cyclic, continuous accumulation pattern in this tissue. The accumulation pattern of PCN-1 has not been well defined in the larval and adult germline, and the objective of this study was to determine if the accumulation pattern is cyclic, as in other cells and organisms, or continuous, similar to cyclin E. RESULTS: To study the larval and adult germline accumulation of PCN-1 expressed from its native locus, we used CRISPR/Cas9 technology to engineer a novel allele of pcn-1 that encodes an epitope-tagged protein. S-phase nuclei were labeled using EdU nucleotide incorporation, and FLAG::PCN-1 was detected by antibody staining. All progenitor zone nuclei, including those that were not in S-phase (as they were negative for EdU staining) showed PCN-1 accumulation, indicating that PCN-1 accumulated during all cell cycle phases in the germline progenitor zone. The same result was observed with a GFP::PCN-1 fusion protein expressed from a transgene. pcn-1 loss-of-function mutations were analyzed, and pcn-1 was necessary for robust fertility and embryonic development. CONCLUSIONS: In the C. elegans early embryo as well as other organisms, PCN-1 accumulates in nuclei only during S-phase. By contrast, in the progenitor zone of the germline of C. elegans, PCN-1 accumulated in nuclei during all cell cycle stages. This pattern is similar to accumulation pattern of cyclin E. These observations support the model that mitotic cell cycle regulation in the germline stem and progenitor cells is distinct from somatic cells, as it does not heavily rely on cyclic accumulation of classic cell cycle proteins.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Ciclo Celular , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Células Germinativas/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Animales , Caenorhabditis elegans/citología , Núcleo Celular/metabolismo , Modelos Biológicos , Células Madre/citología , Células Madre/metabolismo
19.
Nucleic Acids Res ; 45(20): 11658-11672, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-28977437

RESUMEN

The essential element zinc plays critical roles in biology. High zinc homeostasis mechanisms are beginning to be defined in animals, but low zinc homeostasis is poorly characterized. We investigated low zinc homeostasis in Caenorhabditis elegans because the genome encodes 14 evolutionarily conserved Zrt, Irt-like protein (ZIP) zinc transporter family members. Three C. elegans zipt genes were regulated in zinc-deficient conditions; these promoters contained an evolutionarily conserved motif that we named the low zinc activation (LZA) element that was both necessary and sufficient for activation of transcription in response to zinc deficiency. These results demonstrated that the LZA element is a critical part of the low zinc homeostasis pathway. Transcriptional regulation of the LZA element required the transcription factor ELT-2 and mediator complex member MDT-15. We investigated conservation in mammals by analyzing LZA element function in human cultured cells; the LZA element-mediated transcriptional activation in response to zinc deficiency in cells, suggesting a conserved pathway of low zinc homeostasis. We propose that the pathway for low zinc homeostasis, which includes the LZA element and ZIP transporters, acts in parallel to the pathway for high zinc homeostasis, which includes the HZA element, HIZR-1 transcription factor and cation diffusion facilitator transporters.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte de Catión/genética , Homeostasis/genética , Transducción de Señal/genética , Zinc/metabolismo , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte de Catión/metabolismo , Secuencia Conservada/genética , Factores de Transcripción GATA/genética , Factores de Transcripción GATA/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Regiones Promotoras Genéticas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Ácido Nucleico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
PLoS Biol ; 15(1): e2000094, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28095401

RESUMEN

Nuclear receptors were originally defined as endocrine sensors in humans, leading to the identification of the nuclear receptor superfamily. Despite intensive efforts, most nuclear receptors have no known ligand, suggesting new ligand classes remain to be discovered. Furthermore, nuclear receptors are encoded in the genomes of primitive organisms that lack endocrine signaling, suggesting the primordial function may have been environmental sensing. Here we describe a novel Caenorhabditis elegans nuclear receptor, HIZR-1, that is a high zinc sensor in an animal and the master regulator of high zinc homeostasis. The essential micronutrient zinc acts as a HIZR-1 ligand, and activated HIZR-1 increases transcription of genes that promote zinc efflux and storage. The results identify zinc as the first inorganic molecule to function as a physiological ligand for a nuclear receptor and direct environmental sensing as a novel function of nuclear receptors.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Homeostasis/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/metabolismo , Zinc/farmacología , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte de Catión/genética , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , ADN/metabolismo , Elementos de Facilitación Genéticos/genética , Retroalimentación Fisiológica/efectos de los fármacos , Pruebas Genéticas , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Ligandos , Mutación/genética , Regiones Promotoras Genéticas/genética , Dominios Proteicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/genética , Transcripción Genética/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...